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As alternatives to the fast Fourier transform, advanced para-
metric methods based on the damped sinusoidal data model have
been devised to better quantify the nuclear magnetic resonance
(NMR) spectroscopy time-domain data. Previously, linear predic-
tion (LP) fitting methods using Householder triangularization and
singular value decomposition (SVD) techniques have been applied
to the NMR spectroscopy data analysis. In this paper, we propose
an alternating optimization method to quantify the time-domain
NMR spectroscopy data. The proposed algorithm uses the a priori
knowledge of the possible frequency intervals of the damped
sinusoids to obtain more accurate parameter estimates when the
NMR spectroscopy data are obtained under low signal-to-noise
ratio conditions and the peaks are close together. None of the LP
and SVD type of methods can use such approximate a priori
knowledge. We have shown with measured NMR spectroscopy
data that the proposed algorithm can be used to obtain accurate
parameter estimates of frequencies, amplitudes, and damping ra-
tios of the damped sinusoids and therefore the ultimate fit of the
spectrum by using the a priori knowledge about the possible
frequency intervals of the damped sinusoids. © 1999 Academic Press

1. INTRODUCTION

Fast Fourier transform (FFT) is widely used in the spectrg
analysis of nuclear magnetic resonance (NMR) spectrosc
time-domain signals due to its computational efficiency. FFT
usually performed on the time-domain free induction dec
(FID) in conjunction with zero-filling and appropriate apodiza*
tion (usually Gaussian or exponential multiplication or lin&"
broadening) of the time-domain FIDs to obtain high spectr

sampling resolution and signal-to-noise ratio (SNR) within the
frequency-domain spectrd)( However, the frequency resolu-
tion achieved by the FFT method is poor when the FIDs ar
strongly damped or truncated and the apodization process ¢
result in spectral leakage. This ultimately creates reduced are
in some or all of the postprocessed spectrum peaks. The
drawbacks become even worse when the spectral frequenc
are closely spaced and the FID data are recorded under ¢
SNR conditions.

Since the NMR spectroscopy time-domain data can be re
resented as the sum of several damped sinusoids characteri
by the frequencies of the measured metabolites and their ¢
sociated peak amplitudes and damping ratios (due to relaxati
effects dominated by%), advanced parametric spectral esti-
mation algorithms can be used as alternatives for analyzing t
time-domain NMR spectroscopy data. Maximum entrop)
methods (MEM) 2-5 and linear prediction (LP) methods
using Householder triangularizatior®)(and singular value
decomposition (SVD)1-10 techniques have shown consid-
erable promise in providing reliable parameter estimates for tt
NMR spectroscopy data. The location estimates of the spect
Faks obtained by LP-based methods can be greatly affected
small amount of nois&) and their accuracy can be improved

singular value decomposition of the LP data matrix. At low

R, the total least-squares (TLS) techniquEk, (2 can be
sed to further improve the accuracy of LP- and SVD-base
ethods. Recently, maximum likelihood (ML) methodS+¢
1p) have been used to provide frequency estimates with sup
rior resolution for NMR spectroscopy data analysis. A robus
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knowledge of the signal parameters except for the assum



SPECTRAL FITTING OF NMR SPECTRA 109

damped sinusoidal data model. Soaneriori knowledge about spectroscopy data sequence consisting @xponentially de-
the signal parameters, such as the rigorous knowledge of ttaging sinusoids in the presence of unknown noise. Then
exactly known frequency locations and damping ratios or the

more flexible knowledge of the possible frequency intervals of K

the damped sinusoids, may be available to further improve they(n) = 3 qe-%i*" + g(n), n=0,1,...,N — 1,
resolution and accuracy of the parameter estimated.1n1@9, k=1

the knowledge of thexactly known signal poldsas been used [1]

to improve the parameter estimates. The variable projection

method (VARPRO) has been used i8] for accurate quan- wherea, and w,, respectively, denote the complex amplitude

tification of in vivo **P NMR signals by utilizing the priori  and frequency of thkth damped sinusoid whose damping ratio

knowledge of the model function and the phases of all spectisld, with d, € R *; e(n) is the unknown additive noise.

components. The problem of interest herein is to estimate the paramete
In this paper, we extend the RELAX algorithri€] to the {d,, w, o} (. from the data sequencey(n)} \-4 by utilizing

case when the more flexibéepriori knowledge of the possible the availablea priori knowledge of the possible frequency

frequency intervalsf the peak locations, rather than that of thintervals of the damped sinusoids. The quantification of th

exact locations of the peaks theexact values of the dampingNMR spectroscopy data can then be easily accomplished bas

ratios, is available. The extended RELAX algorithm is referredn the parameter estimates.

to as the E-RELAX algorithm. We have demonstrated with

numerical examples the performances of RELAX and the fa&tl. The RELAX Algorithm

ML (FML) method (14) for signal parameter estimation. RE- The RELAX algorithm (6) has been proposed to estimate

LAX outperforms FML when the SNR is low. When the SNRy,o jamped sinusoidal signal parameters based on the d

is high, RELAX and FML achieve almost identical perfors, e in [1] without considering arg priori knowledge of the

mance. We also mOP”fy FML by utilizing the prjori knowl- signal parameters. RELAX obtains the parameter estimat
edge of frequency intervals and the so-obtained methodi§ -~ = -

K K L
referred to as E-FML. Both E-RELAX and E-FML have beer J’Ncik’s Oé';}i\tgﬁoor: {di @ aifics by minimizing the follow
applied to low SNR phosphorus'®) spectroscopy datasets, ’
whose spectra have overlapping peaks, rapidly changing peak
heights, and spectral frequency changes. The experimental
results show that both methods provide consistent frequency C{d @ ardicn) = [y = 2 audpil, [2]
. . . L k=1
estimates by incorporating tleepriori knowledge of the pos-
sible frequency intervals of the damped sinusoids for the low
SNR *'P spectroscopy data. The spectroscopy analysis ba&‘ﬂbe
on the parameter estimates of E-RELAX more accurately re- .
flects the metabolic change of the subject than that based on y=1[y(0) y(1) - - -y(N= 1], 3]
those of E-FML for the metabolite peak. P
The remainder of this paper is organized as follows. Sectiéfd
2 briefly describes the E-RELAX algorithm for the damped
sinusoidal signal parameter estimation by using dhpriori b, = [1 e "dtion . . g(-detion(N-D]T [4]
knowledge of the possible frequency intervals. Section 3 pre-
sents both numerical and experimental examples showing thigh (-)" denoting the transpose. RELAX utilizes the same
performances of E-RELAX and E-FML when compared witlstructure as inZ1) to optimize the NLS cost function. Note
the original RELAX algorithm, the best SVD methatlf, and that when the noisee(n) is a zero-mean white Gaussian
FML (14) without using any of the priori knowledge of the random process, the NLS estimates coincide with the M
possible frequency intervals of the damped sinusoids. Finalgstimates. When the noise is colored, the NLS estimates are
Section 4 contains our conclusions. longer the ML estimates, but they can still have exceller
statistical performance2p).
To efficiently optimize the complicated NLS cost function in
2. ALGORITHMS [2], RELAX performs a complete alternating search by letting
only the parameters of one damped sinusoid vary and fixing
The time-domain NMR spectroscopy data can be reprethers at their most recently determined values. K etenote
sented as the sum of several damped complex sinusoids, ehehintermediate number of damped sinusoids and given {
of which has its own characteristic frequency, damping ratid;,, @;} ;... Then the estimates ofd{, w,} can be deter-
amplitude, and phase. Lg(n) denote a time-domain NMR mined by

K

re| - || denotes the Euclidean norr@Q),
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{dy, & = arg max|y Ly, ¥a}, [5] Step 3. AssumeK = 3. Computey; with [7] by using {d;,
dhook @, &;}{-, obtained in Step 2. Obtaindg, @,, &z} from y,.
Next, computey; with [7] by using {d;, @;, &} 2, and
where(-)" denotes the complex conjugate transpose; redetermine §,, @;, @} from y;. Then computey, with [7]
by using {di, @;, &}i-1s and redetermine d,, @,, &,}
N, if d, =0, j fromy,.
a={ 1-—exp(—2Nd,) it d = 0: 6] Iterate the previous three substeps until practical conve
11— exp(—2dy) k7 Vs gence.
< Remaining steps. Continue similarly untiK is equal to the
—y- 3 5"4)' 7] desired or estimated number of damped sinusoids. Note that |
Ye= Y i e eachK, the iteration of th& substeps continues until practical

convergence is achieved.

The practical convergence in the iterations of the abov
RELAX algorithm may be determined by checking the relative
change of the cost functio@({d;, ®;, &} ;) in [2] between
. two consecutive iterations. In our examples, we terminate tt
= [y(0) y(De ™ - - -y(N = D)e *™UIT [8] jierative process in each of the above steps when the afol

mentioned relative change is less thias 10°°. Although not

with (f)i having the same form a$, in [4] except thaid; and
w; are replaced byl; and @;, respectively;

and finally guaranteed to converge to the global minimum, it has bee
shown with many numerical and empirical examples used |

P = [1 el . gl [91 many papers that the alternating optimization method is vel

useful and converges to at least a local minimum under mil

The estimate ofy, can be determined by condition. The convergence issue of the alternating optimiz:

tion method is addressed i3, 29.

S et
o = a

[10] 2.2. The E-RELAX Algorithm
dk:&k,wk:@k

In NMR spectroscopy, the possible intervals of some or a
It has been shown irLg) that for a fixedd,, the,(d,) can be of the frequencies of the damped sinusoids may be knawn

obtained as the location of the dominant peak of the normalizBHOri- We attempt to obtain more accurate estimatesdf {

periodogram 15 (dy)|?/a(dy), which can be computed effi- @ a} o, by incorporating this type o& priori knowledge
ciently via FFT with zero-filling @(dy), §i(dy), anda(d,) into the RELAX algorithm. This extended algorithm is referred

to as E-RELAX. The principal difference between RELAX and
E-RELAX lies in the maximization of [5]. Let, be a possible
frequency interval, during which there exists only one domi
nant damped sinusoid with frequenaey. Then the estimates
of {d,, w,} are now determined by

indicate the dependence &f;, §,, anda on d,). Then the
problem of solving [5] becomes findindy, such that the right
side of [5] is maximized, i.e.,

d, = arg ma
d

>{|¢’E[G)k(dk)]yk(dk)| 2}, [11]

a(dy) N .
‘ {dy, @ = arg max{|wl§i|¥al. [12]
di, 0kE L
which can be implemented by a typical 1D search. The search

interval for {d} i, used in our examples in Section 3 is fronquation [12] indicates that the 1D search for is now
0.0015 to 0.05. Oncé, andd, are obtainede, can be readily |imited to the interval, rather than the entire possible range.

obtained via [10]. _ _ Let {Z,} ., denote the given priori frequency intervals of the
Then the steps of the RELAX algorithm are summarized g mped sinusoids.&;} X ;.. is given. Then

follows.
Step 1. AssumeK = 1. Estimate fl,, ®,, &,} from v. P <
Step 2. AssumeK = 2. Computey, with [7] by using {d, = U @) - U o3, [13]
o, a,} obtained in Step 1. Obtaind,, ®,, &,} from y,. i=1 i=Lli#k
Next, computey, with [7] by using {d,, ®,, &,} and then
reestimate ¢l,, @®,, &,} from y,. whereU denotes the union of sets and tKe— 1 frequency
Iterate the previous two substeps until “practical conveintervals {8;} ;.. are determined by checking@®{} .«
gence” is achieved (to be discussed later on). with the givena priori frequency intervals. The steps of
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E-RELAX are similar to those of RELAX except for the extra The positive and symmetric absorption spectrum is con
constraints imposed b for E-RELAX. Note that when the monly used for NMR spectroscopy data analysis. Theoret
baseline distortion is severe, E-RELAX can still be used to fially, the absorption is confined to the real part of the Lorent
the NMR spectroscopy data after the correction of the baselizian spectrum with the phases of the damped sinusoids bei
distortion with the existing baseline distortion correction mettzero (). In practice, the phases of the damped sinusoids canr

ods, such as those i29%). be zeros due to a variety of reasons, such as the phase diff
ence between the transmitter and detector of the spectrome
2.3. FML Methods and a delay in the start of the free induction decay collectior

The FML method 14) was proposed for the damped sinu:rhe introduced phases will _dlstort the absorpt_lon spectrum at
. R must be corrected to obtain a pure absorption spectrum. /
soid parameter estimation in a fast manner. FML belongs to an,: :

ndicated in 6, 26), as long as the phases and other paramete

alternating optimization approach and reduces the computathqhe damped sinusoids can be estimated correctly, the phz

complexity of the ML methods by utilizing the knowledge Oaqsorption spectrum corresponds to the real part of the phas

the shape of the compressed likelihood function. The StatiStii%rentzian spectrum obtained by setting the phases of all t

performance and computational efficiency of FML have bee({

demonstrated inl4) when compared with other methods base, gcay sinusoids to zero, SpeC|f|c_aIIy, the phas_ed spectrum
. . . . the measured FIDs can be obtained by applying FFT to tt
on alternating projections and linear prediction. S&4) for

. i . Ne 1. -
the detailed implementation steps of FML. synthesized damped smusmdgl datg sequend@y} - with
. . o the phases of all damped sinusoids set to zero, whgre
We modify FML by using thea priori knowledge of the .
) : . denotes the number of the synthesized data samples and
frequency intervals of the metabolite peaks. The so-obtaine

method is referred to as E-FML. E-FML obtains the frequency

estimate of each damped sinusoid by searching a possible K
frequency interval, which is determined in the same way as that y () = > |ak‘e<—d}+jak>n, n=0,1,...,N,— 1.
of E-RELAX. k=1

[14]
2.4. The Analysis of the NMR Spectroscopy Data

With the accurate estimates ofl{, w,, a,}i., we can We choose\, to be sufficiently large so that(N, — 1) ~ 0.
analyze and fit the spectrum of the NMR spectroscopy dafehen the phased absorption spectrum can be obtained by tak
including the analysis of the phased absorption spectrum ahe real part of the so-obtained phased spectrum. We use
the calculation of the relative areas corresponding to the msmulation example to illustrate this phase correction metho

tabolite peaks of interest. The data sequence is generated by using
35 ] T 60 T
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FIG. 1. |lllustration of the proposed phase correction method in the presence of zero-mean complex Gaussian neise @ith (a) The true absorption
spectrum ( - - -) and the distorted absorption spectrum (—). (b) Comparison of the phased absorption spectrum and the true absorption spectrum.
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FIG. 2. CRBs (solid line) and MSEs of the damped sinusoidal parameter estimates of the firstofth2 signals obtained via RELAX and FML as a
function of SNR in the presence of white noise whén= 25. (a) Fora; = 1. (b) Forf, = 0.42. (c) Ford, = 0.4.

y(n) = eltel 0142700 4 @idzgl-005ti2m(02In 1 g(p), and the true one, as shown in Fig. 1b, demonstrates that t
so-obtained phased absorption spectrum fits very well to tt
true absorption spectrum.

) The relative area for a defined region of the spectrum spa
whereN = 25; ¢, a_lnd 4;2_, respectw_ely, denote the phase_s O,ﬁing the metabolite peak of interest provides a quantitativ
the two damped sinusoids; amfn) is the zero-mean white gg4imate of the concentration of spins giving rise to the NMF

complex Gaussian noise widr' = 0.1. Figure 1a shows the shectroscopy data. With, and d,, the absorption spectrum
true absorption spectrum (denoted by the dash-dotted line) W&@rresponding to theth metabolite peak has the form
¢, = ¢, = 0. The distorted absorption spectrum obtained with

¢, = w6 and¢, = 7/3 is also shown in Fig. 1a (denoted by
the solid line). The phased absorption spectrum based on the

n=0,1,...,N—1, [15]

parameter estimates via RELAX is shown in Fig. 1b (denoted Pw) = ﬂ, [16]
by the dotted line). The residue between the phased spectrum di + 0?
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FIG. 3. (a) The FFT spectrum obtained from the total NMR spectroscopy data. (b) The FFT spectrum obtained by using the first 100 points of the
data.

which is the real part of the Fourier transform of thkth which is the lowest bound that an unbiased estimator ce
estimated damped sinusoid whose phase is set to zero. Accachieve. The mean-squared errors (MSEs) of the parame
ing to Parseval’'s theoren27), we have estimates are determined from 500 independent Monte Cal

trials. In this example, the data sequence is generated by usi

S (ajemdme - L[ _lad?
Ek: 2 (|ak|e k) :Z ~2 2dw' [17]

= 2+ w y(n)=e*" +e*" +e(n), n=0,1,...,N—1, [19]

-

The area oP,(w) can then be easily computed as whereN = 25,s, = —0.4 + j27(0.42),s, = —0.07 +
j2m(0.52), ande(n), as before, is the zero-mean white com-
" ayd 2 Ed plex Gaussian noise with variane€. The SNR herein is
S = J — K kz W= k=1,2,... K, defined as-10 log,,(c°) dB. Figures 2a—2c show the MSEs of
dit o |Gud the estimates ofx,, f,, andd,, as a function of SNR via
[18] RELAXand FML. (Note that the results far,, f,, andd, are
similar.) The MSEs of the parameter estimates obtained v
whereE, is computed by using the first equality in [17].  both methods approach the corresponding CRBs for high SN
However, RELAX provides better performance than FML for
3. NUMERICAL AND EXPERIMENTAL RESULTS low SNR. We also note that at low SNR, RELAX and FML are
comparable in computation. However, the average number
In this section, we first compare the performances ®ATLAB flops required by FML is about 1.7 times of that
RELAX and FML with a numerical example and then companequired by RELAX at high SNR.
RELAX and the best SVD methodl) using the measured Consider next an example where the measured time-dome
NMR spectroscopy data since it has been showrllB) that NMR spectroscopy data sequence consists of 2048 sampl
RELAX outperforms the SVD method in performance wittSpecifically, these data samples are 64 acquisition-averag
numerical examples. Finally, the performances of E-RELAKhosphorus NMR spectra obtained from the medial gastrocn
and E-FML are compared with the measured NMR spectrasius muscle at 1.5 T (GE Signa) (TR 2 s, unlocalized,
copy datasets. 6-cm-diameter'P-tuned coil). The spectrum of the data se:
Consider first a numerical example showing the perfogquence has eight metabolite peaks representing, from left
mances of RELAX and FML for the signal parameter estimaight, STD (an external standard of hexachlorocyclotriphos
tion when compared with the Crdmé&ao bound (CRB), phazene (HCCTP) and chromium acetate (CrOAc) in ber
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FIG. 4. Comparison of the manually phased absorption spectrum with the phased absorption spectra obtained via (b) RELAX, (c) FML, (d) SV
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TABLE 1
The Approximate Frequency Locations of the Eight *P Metabolite Peaks of the Data Used in the First Experimental Example

Peak

STD PME R PDE PCr y-ATP a-ATP B-ATP

Frequency (ppm) 26.57 9.06 7.11 5.29 2.11 —0.05 —5.29 —13.85

zene), PME (phosphomonoester), (fhorganic phosphate), identified by all the three methods and none of these metho
PDE (phosphodiester), PCr (phosphocreatine),and-, and can locate the peak of PME without using theriori knowl-
B-ATP (adenosine triphosphate). Figures 3a and 3b, respedge about the peak locations. Table 1 shows the approxim:
tively, show the FFT spectrum obtained by using all the 2048cations of the eight metabolite peaks estimated by thre
data samples and the first 100 data samples obtained dpgctroscopy experts. The actual peak locations are assume
squarely truncating the original dataset without using any apee anywhere within the frequency intervals of length 0.23 ppr
dization. It is easier to distinguish the eight peaks in Fig. 3tentered at the approximate locations given in Table 1. (W
than it is in Fig. 3a, which is dominated by noise. The absorpave assumed that only one dominant peak is located at ec
tion spectrum using the first 100 measured FIDs is shown fiossible frequency interval.) With thia priori knowledge
Fig. 4a, which indicates that phase correction is necessaryatmout the possible frequency intervals of the damped sinusoic
obtain a pure absorption spectrum. Only the peaks of labelaitl eight metabolite peaks are identified by using E-RELAX
STD, R, and PCr arise from single compounds. The PME pealkd E-FML. It is found that the phased absorption spectt
is generated by two metabolites: phosphatidylcholine (PC) aabtained via E-RELAX and E-FML fit well with the manually
phosphatidylethanolamine (PE). The PDE peak is composedbfsed absorption spectrum obtained via 114° zero-order ph
glycerophosphorylcholine (GPC) and glycerophosphoryletmg, as can be seen clearly from Figs. 4e and 4f. (Note that
anolamine (GPE). The peaks labeked 3-, andy-ATP arise vertical offset is introduced in Figs. 4b—4f to show eact
from nucleotide di- and triphosphates (NDP and NTP), maingpectrum clearly.)

adenosine triphosphate (ATP). This is the reason that thes&inally, consider 52 consecutively measured NMR spectro:
peaks have been labeled “ATP.” However, unitevivo con- copy datasets. Specifically, these data samples are 16-acqu
ditions the spectroscopist is actually monitoring a summatidion-averaged, phosphorus, NMR spectra obtained from tt
of all the nucleotide di- and triphosphates present and noedial gastrocnemius muscle at 1.5 T (GE Signa) @R s,
simply ATP. Therefore, the assignment of a resonance aslocalized, 6-cm-diametétP-tuned coil) while the volunteer
“ATP” is not strictly accurateZ8). In addition, only the3 peak rested (datasets 1-7), performed in-magnet exercise (datas
is a pure NTP (mainly ATP) signal. The peak contains 8—28), and rested again (datasets 29-52). This type of data
contributions from both NTPs and NDPs. Tageak consists is difficult to analyze automatically due to the fast changing
of NDPs, NTPs, and nicotinamide dinucleotide (NAD/NADH}amplitudes, frequency locations (due to PH change), and pe
(29, 30. Therefore, the three ATP peaks are not expected awerlap of the damped sinusoids. Taepriori knowledge on
have equal areas. The peak is the smallest, thg peak is the approximate frequency locations of the eight phosphort
larger, and thex peak is the largest. This can be clearly seen byietabolite peaks is determined and verified by three spectrc
simply visual inspection of Figs. 4b—4f. The phased absorpticopy experts. Table 2 shows these approximate peak locatiol
spectra obtained via the RELAX, FML, and SVD algorithm3he frequency interval of length 0.23 ppm is again used in thi
from the first 100 data samples without using amypriori example. Figures 5a and 5b, respectively, show the eig
knowledge about the peak locations are shown in Figs. 4b—4fdktabolite peak estimates versus the dataset number us
respectively. Note that seven of the eight peaks are propeR¥ELAX and FML. Since the NMR spectroscopy data are

TABLE 2
The Approximate Frequency Locations of the Eight **P Metabolite Peaks of the 52 Datasets
Used in the Second Experimental Example

Peak

STD PME R PDE PCr y-ATP a-ATP B-ATP

Frequency (ppm) 27.07 8.54 6.91 4.87 2.06 —0.13 —5.74 —14.08
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FIG. 5. Distribution of the eighf'P metabolite peak estimates obtained via (a) RELAX, (b) FML, (c) E-RELAX, and (d) E-FML.

collected at a relatively low SNR and PME,, Bnd PDE are ing exercise, it is expected that the amplitude of the STI
closely spaced and overlapped, RELAX and FML cannot prpeak will remain constant (within the limits of the signal-
vide consistent location (frequency) estimates of PMEaRd to-noise error), the Ppeak will increase, and the PCr peak
PDE for the 52-set measured data. In addition, both RELAXill decrease. The other peak amplitudes are not expected
and FML will erroneously identify nose peaks as metabolitthange during exercise. Following exercise, thamd PCr
peaks. Note that frequency estimates via FML are worse thag@ak amplitudes are expected to return to their rest value
those via RELAX. More consistent frequency estimates can bais is what is observed via E-RELAX and E-FML analy-
obtained via E-RELAX and E-FML by using tha priori ses, as illustrated by Figs. 6 and 7, respectively. Howeve
knowledge of the frequency intervals, as shown in Figs. 5¢c akdFML analysis is more error-prone, as shown by the ver
5d. In these figures there are no noise peaks identified laes P, peak amplitude for dataset 22 and very high P
metabolites. amplitudes for datasets 44 and 45. E-FML also shows larg
Figures 6 and 7, respectively, illustrate the relative areasd spurious amplitude errors for the PME and PDE peak
corresponding to the parameter estimates of the eitfht which can be seen from Figs. 7b and 7d. Analysis vi:
metabolite peaks obtained via E-RELAX and E-FML. DurE-RELAX more accurately reflects (within the limits of the
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FIG. 6. Relative areas of the eightP metabolite peaks versus the dataset number obtained via E-RELAX. (a) STD (an external standard of hexac
cyclotriphosphazene (HCCTP) and chromium acetate (CrOAc) in benzene). (b) PME (phosphomonoesteiipdi@aiic phosphate). (d) PDE (phosphodi-
ester). (e) PCr (phosphocreatine). 4FATP. (g) a-ATP. (h) B-ATP.

signal-to-noise error) the expected metabolite level trend®d there exist closely spaced damped sinusoids, the E-R
For this example, the MATLAB flops required by RELAX,LAX algorithm can still provide accurate parameter estimate
FML, E-RELAX, and E-FML are about 4.4 10°, 5.1 X due to using the priori knowledge of the possible frequency

10% 1.9 X 10°, and 2.7x 10° respectively. intervals of the damped sinusoids, which is more flexible tha
the a priori knowledge of the exactly known frequency loca-
4. CONCLUSIONS tions and damping ratios used by other methods. The quan

In this paper, we have presented the E-RELAX algorithiiication of the NMR spectroscopy data, including the analysi
and applied it to measured phosphortiB) spectroscopy data.of the phased absorption spectra and the calculation of tl
When the SNR of the recorded NMR spectroscopy data is Id@lative areas corresponding to the metabolite peaks of intere
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can be accomplished readily by using the parameter estimat@sV. Viti, E. Massaro, L. Guidoni, and P. Barone, The use of the
from E-RELAX. maximum entropy method in NMR spectroscopy, J. Magn. Reson.

70, 379-393 (1986).
4. G. J. Daniell and P. J. Hore, Maximum entropy and NMR—A new
approach, J. Magn. Reson. 84, 515-536 (1989).
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