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As alternatives to the fast Fourier transform, advanced para-
etric methods based on the damped sinusoidal data model have

een devised to better quantify the nuclear magnetic resonance
NMR) spectroscopy time-domain data. Previously, linear predic-
ion (LP) fitting methods using Householder triangularization and
ingular value decomposition (SVD) techniques have been applied
o the NMR spectroscopy data analysis. In this paper, we propose
n alternating optimization method to quantify the time-domain
MR spectroscopy data. The proposed algorithm uses the a priori
nowledge of the possible frequency intervals of the damped
inusoids to obtain more accurate parameter estimates when the
MR spectroscopy data are obtained under low signal-to-noise

atio conditions and the peaks are close together. None of the LP
nd SVD type of methods can use such approximate a priori
nowledge. We have shown with measured NMR spectroscopy
ata that the proposed algorithm can be used to obtain accurate
arameter estimates of frequencies, amplitudes, and damping ra-
ios of the damped sinusoids and therefore the ultimate fit of the
pectrum by using the a priori knowledge about the possible
requency intervals of the damped sinusoids. © 1999 Academic Press

1. INTRODUCTION

Fast Fourier transform (FFT) is widely used in the spe
nalysis of nuclear magnetic resonance (NMR) spectros

ime-domain signals due to its computational efficiency. FF
sually performed on the time-domain free induction de
FID) in conjunction with zero-filling and appropriate apodi
ion (usually Gaussian or exponential multiplication or
roadening) of the time-domain FIDs to obtain high spe
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ampling resolution and signal-to-noise ratio (SNR) within
requency-domain spectra (1). However, the frequency reso
ion achieved by the FFT method is poor when the FIDs
trongly damped or truncated and the apodization proces
esult in spectral leakage. This ultimately creates reduced
n some or all of the postprocessed spectrum peaks. T
rawbacks become even worse when the spectral freque
re closely spaced and the FID data are recorded unde
NR conditions.
Since the NMR spectroscopy time-domain data can be

esented as the sum of several damped sinusoids charac
y the frequencies of the measured metabolites and the
ociated peak amplitudes and damping ratios (due to relax
ffects dominated byT*2), advanced parametric spectral e
ation algorithms can be used as alternatives for analyzin

ime-domain NMR spectroscopy data. Maximum entr
ethods (MEM) (2–5) and linear prediction (LP) metho
sing Householder triangularization (6) and singular valu
ecomposition (SVD) (7–10) techniques have shown cons
rable promise in providing reliable parameter estimates fo
MR spectroscopy data. The location estimates of the sp
eaks obtained by LP-based methods can be greatly affec
small amount of noise (7) and their accuracy can be improv
y singular value decomposition of the LP data matrix. At
NR, the total least-squares (TLS) techniques (11, 12) can be
sed to further improve the accuracy of LP- and SVD-ba
ethods. Recently, maximum likelihood (ML) methods (13–
5) have been used to provide frequency estimates with s
ior resolution for NMR spectroscopy data analysis. A rob
lternating optimization method, referred to as RELAX (16),
as also been proposed to estimate the damped sinu
ignal parameters.
All these methods, however, do not apply anya priori

er

44.

N.

nowledge of the signal parameters except for the assumed
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109SPECTRAL FITTING OF NMR SPECTRA
amped sinusoidal data model. Somea priori knowledge abou
he signal parameters, such as the rigorous knowledge o
xactly known frequency locations and damping ratios o
ore flexible knowledge of the possible frequency interva

he damped sinusoids, may be available to further improv
esolution and accuracy of the parameter estimates. In (17, 18),
he knowledge of theexactly known signal poleshas been use
o improve the parameter estimates. The variable proje
ethod (VARPRO) has been used in (19) for accurate quan

ification of in vivo 31P NMR signals by utilizing thea priori
nowledge of the model function and the phases of all spe
omponents.
In this paper, we extend the RELAX algorithm (16) to the

ase when the more flexiblea priori knowledge of the possib
requency intervalsof the peak locations, rather than that of
xact locations of the peaksor theexact values of the dampi
atios, is available. The extended RELAX algorithm is refer
o as the E-RELAX algorithm. We have demonstrated w
umerical examples the performances of RELAX and the
L (FML) method (14) for signal parameter estimation. R
AX outperforms FML when the SNR is low. When the SN

s high, RELAX and FML achieve almost identical perf
ance. We also modify FML by utilizing thea priori knowl-
dge of frequency intervals and the so-obtained metho
eferred to as E-FML. Both E-RELAX and E-FML have be
pplied to low SNR phosphorus (31P) spectroscopy datase
hose spectra have overlapping peaks, rapidly changing
eights, and spectral frequency changes. The experim
esults show that both methods provide consistent frequ
stimates by incorporating thea priori knowledge of the pos
ible frequency intervals of the damped sinusoids for the
NR 31P spectroscopy data. The spectroscopy analysis b
n the parameter estimates of E-RELAX more accuratel
ects the metabolic change of the subject than that base
hose of E-FML for the metabolite peak Pi.

The remainder of this paper is organized as follows. Se
briefly describes the E-RELAX algorithm for the damp

inusoidal signal parameter estimation by using thea priori
nowledge of the possible frequency intervals. Section 3
ents both numerical and experimental examples showin
erformances of E-RELAX and E-FML when compared w

he original RELAX algorithm, the best SVD method (10), and
ML (14) without using any of thea priori knowledge of the
ossible frequency intervals of the damped sinusoids. Fin
ection 4 contains our conclusions.

2. ALGORITHMS

The time-domain NMR spectroscopy data can be re
ented as the sum of several damped complex sinusoids
f which has its own characteristic frequency, damping r

mplitude, and phase. Lety(n) denote a time-domain NMR m
he
e
f

he

n

al

h
st
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pectroscopy data sequence consisting ofK exponentially de
aying sinusoids in the presence of unknown noise. Then

y~n! 5 O
k51

K

ake
~2dk1jvk!n 1 e~n!, n 5 0, 1, . . . ,N 2 1,

[1]

herea k andv k, respectively, denote the complex amplitu
nd frequency of thekth damped sinusoid whose damping ra

s dk with dk [ 51; e(n) is the unknown additive noise.
The problem of interest herein is to estimate the param

dk, v k, a k} k51
K from the data sequence {y(n)} n50

N21 by utilizing
he availablea priori knowledge of the possible frequen
ntervals of the damped sinusoids. The quantification of
MR spectroscopy data can then be easily accomplished
n the parameter estimates.

.1. The RELAX Algorithm

The RELAX algorithm (16) has been proposed to estim
he damped sinusoidal signal parameters based on the
odel in [1] without considering anya priori knowledge of the

ignal parameters. RELAX obtains the parameter estim
d̂k, v̂ k, â k} k51

K of { dk, v k, a k} k51
K by minimizing the follow-

ng NLS criterion,

C~$dk, vk, ak% k51
K ! 5 iy 2 O

k51

K

akfki 2, [2]

herei z i denotes the Euclidean norm (20),

y 5 @ y~0! y~1! · · ·y~N 2 1!# T, [3]

nd

fk 5 @1 e~2dk1jvk! · · ·e~2dk1jvk!~N21!# T, [4]

ith [T denoting the transpose. RELAX utilizes the sa
tructure as in (21) to optimize the NLS cost function. No
hat when the noisee(n) is a zero-mean white Gauss
andom process, the NLS estimates coincide with the
stimates. When the noise is colored, the NLS estimates a

onger the ML estimates, but they can still have exce
tatistical performance (22).
To efficiently optimize the complicated NLS cost function

2], RELAX performs a complete alternating search by let
nly the parameters of one damped sinusoid vary and fixin
thers at their most recently determined values. LetK# denote

he intermediate number of damped sinusoids and givenâ i ,
ˆ

i , v̂ i} i51,iÞk
K# . Then the estimates of {dk, v k} can be deter
ined by
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110 BI ET AL.
$d̂k, v̂k% 5 arg max
dk,vk

$uc k
Hỹku 2/a%, [5]

here[H denotes the complex conjugate transpose;

a 5 H N, if dk 5 0,
1 2 exp~22Ndk!

1 2 exp~22dk!
, if dk Þ 0; [6]

yk 5 y 2 O
i51,iÞk

#K

â if̂ i, [7]

ith f̂ i having the same form asfk in [4] except thatdi and
i are replaced byd̂i and v̂ i , respectively;

ỹk 5 @ yk~0! yk~1!e2dk · · ·yk~N 2 1!e2dk~N21!# T; [8]

nd finally

ck 5 @1 ejvk · · ·ejvk~N21!#. [9]

he estimate ofa k can be determined by

âk 5
¥ n50

N21 yk~n!e~2dk1jvk!n

a
U

dk5 d̂k ,vk5v̂k

. [10]

t has been shown in (16) that for a fixeddk, thev̂ k(dk) can be
btained as the location of the dominant peak of the norma
eriodogramuck

Hỹk(dk)u 2/a(dk), which can be computed ef
iently via FFT with zero-filling (v̂ k(dk), ỹk(dk), and a(dk)
ndicate the dependence ofv̂ k, ỹk, and a on dk). Then the
roblem of solving [5] becomes findingd̂k such that the righ
ide of [5] is maximized, i.e.,

d̂k 5 arg max
dk

H uc k
H@v̂k~dk!#ỹk~dk!u 2

a~dk!
J , [11]

hich can be implemented by a typical 1D search. The se
nterval for {dk} k51

K used in our examples in Section 3 is fr
.0015 to 0.05. Oncev̂ k andd̂k are obtained,â k can be readil
btained via [10].
Then the steps of the RELAX algorithm are summarize

ollows.

Step 1. AssumeK# 5 1. Estimate {d̂1, v̂ 1, â 1} from y.

Step 2. AssumeK# 5 2. Computey2 with [7] by using {d̂1,
ˆ 1, â 1} obtained in Step 1. Obtain {d̂2, v̂ 2, â 2} from y2.
ext, computey1 with [7] by using {d̂2, v̂ 2, â 2} and then

eestimate {d̂1, v̂ 1, â 1} from y1.
Iterate the previous two substeps until “practical con
ence” is achieved (to be discussed later on). w
d

ch

s

-

Step 3. AssumeK# 5 3. Computey3 with [7] by using {d̂i ,
ˆ i , â i} i51

2 obtained in Step 2. Obtain {d̂3, v̂ 3, â 3} from y3.
ext, computey1 with [7] by using {d̂i , v̂ i , â i} i52

3 and
edetermine {d̂1, v̂ 1, â 1} from y1. Then computey2 with [7]
y using {d̂i , v̂ i , â i} i51,3 and redetermine {d̂2, v̂ 2, â 2}
from y2.
Iterate the previous three substeps until practical con

ence.

Remaining steps.Continue similarly untilK# is equal to the
esired or estimated number of damped sinusoids. Note th
achK# , the iteration of theK# substeps continues until practi
onvergence is achieved.
The practical convergence in the iterations of the ab
ELAX algorithm may be determined by checking the rela
hange of the cost functionC({ d̂i , v̂ i , â i} i51

K ) in [2] between
wo consecutive iterations. In our examples, we terminate
terative process in each of the above steps when the a

entioned relative change is less thanj 5 1023. Although not
uaranteed to converge to the global minimum, it has
hown with many numerical and empirical examples use
any papers that the alternating optimization method is
seful and converges to at least a local minimum under
ondition. The convergence issue of the alternating optim
ion method is addressed in (23, 24).

.2. The E-RELAX Algorithm

In NMR spectroscopy, the possible intervals of some o
f the frequencies of the damped sinusoids may be knoa
riori. We attempt to obtain more accurate estimates ofdk,
k, a k} k51

K by incorporating this type ofa priori knowledge
nto the RELAX algorithm. This extended algorithm is refer
o as E-RELAX. The principal difference between RELAX a
-RELAX lies in the maximization of [5]. Letzk be a possibl

requency interval, during which there exists only one do
ant damped sinusoid with frequencyv k. Then the estimate
f { dk, v k} are now determined by

$d̂k, v̂k% 5 arg max
dk,vk[zk

$uc k
Hỹku 2/a%. [12]

quation [12] indicates that the 1D search forv k is now
imited to the intervalzk rather than the entire possible ran
et { zoi} i51

K denote the givena priori frequency intervals of th
amped sinusoids. {v̂ i} i51,iÞk

K# is given. Then

zk 5 ø
i51

K

~zoi! 2 ø
i51,iÞk

#K

~b i!, [13]

hereø denotes the union of sets and theK# 2 1 frequency
ntervals {b i} i51,iÞk

K# are determined by checking {v̂ i} i51,iÞk
K#
ith the given a priori frequency intervals. The steps of
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111SPECTRAL FITTING OF NMR SPECTRA
-RELAX are similar to those of RELAX except for the ex
onstraints imposed byzk for E-RELAX. Note that when th
aseline distortion is severe, E-RELAX can still be used t

he NMR spectroscopy data after the correction of the bas
istortion with the existing baseline distortion correction m
ds, such as those in (25).

.3. FML Methods

The FML method (14) was proposed for the damped si
oid parameter estimation in a fast manner. FML belongs
lternating optimization approach and reduces the compu
omplexity of the ML methods by utilizing the knowledge
he shape of the compressed likelihood function. The stati
erformance and computational efficiency of FML have b
emonstrated in (14) when compared with other methods ba
n alternating projections and linear prediction. See (14) for

he detailed implementation steps of FML.
We modify FML by using thea priori knowledge of the

requency intervals of the metabolite peaks. The so-obta
ethod is referred to as E-FML. E-FML obtains the freque
stimate of each damped sinusoid by searching a po

requency interval, which is determined in the same way as
f E-RELAX.

.4. The Analysis of the NMR Spectroscopy Data

With the accurate estimates of {dk, v k, a k} k51
K , we can

nalyze and fit the spectrum of the NMR spectroscopy
ncluding the analysis of the phased absorption spectrum
he calculation of the relative areas corresponding to the
abolite peaks of interest.

FIG. 1. Illustration of the proposed phase correction method in the p

pectrum (z - z -) and the distorted absorption spectrum (—). (b) Compariso
t
ne
-

an
on

al
n
d

ed
y
ble
at

a,
nd
e-

The positive and symmetric absorption spectrum is c
only used for NMR spectroscopy data analysis. Theo

ally, the absorption is confined to the real part of the Lor
ian spectrum with the phases of the damped sinusoids
ero (1). In practice, the phases of the damped sinusoids ca
e zeros due to a variety of reasons, such as the phase
nce between the transmitter and detector of the spectro
nd a delay in the start of the free induction decay collec
he introduced phases will distort the absorption spectrum
ust be corrected to obtain a pure absorption spectrum

ndicated in (6, 26), as long as the phases and other param
f the damped sinusoids can be estimated correctly, the
bsorption spectrum corresponds to the real part of the p
orentzian spectrum obtained by setting the phases of a
ecay sinusoids to zero. Specifically, the phased spectru

he measured FIDs can be obtained by applying FFT to
ynthesized damped sinusoidal data sequence {ys(n)} n50

Ns21 with
he phases of all damped sinusoids set to zero, wherNs

enotes the number of the synthesized data samples an

ys~n! 5 O
k51

K

uâkue~2 d̂k1j v̂k!n, n 5 0, 1, . . . ,Ns 2 1.

[14]

e chooseNs to be sufficiently large so thatys(Ns 2 1) ' 0.
hen the phased absorption spectrum can be obtained by

he real part of the so-obtained phased spectrum. We
imulation example to illustrate this phase correction met
he data sequence is generated by using

ence of zero-mean complex Gaussian noise withs2 5 0.1. (a) The true absorptio
res

n of the phased absorption spectrum and the true absorption spectrum.
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112 BI ET AL.
y~n! 5 ejf1e@20.11j2p~0.1!#n 1 ejf2e@20.051j2p~0.2!#n 1 e~n!,

n 5 0, 1, . . . ,N 2 1, [15]

hereN 5 25; f1 andf2, respectively, denote the phases
he two damped sinusoids; ande(n) is the zero-mean whi
omplex Gaussian noise withs2 5 0.1. Figure 1a shows th
rue absorption spectrum (denoted by the dash-dotted line

1 5 f2 5 0. The distorted absorption spectrum obtained
1 5 p/6 andf2 5 p/3 is also shown in Fig. 1a (denoted

he solid line). The phased absorption spectrum based o
arameter estimates via RELAX is shown in Fig. 1b (den

FIG. 2. CRBs (solid line) and MSEs of the damped sinusoidal para
unction of SNR in the presence of white noise whenN 5 25. (a) Fora1 5
y the dotted line). The residue between the phased spectr
f

ith
h

the
d

nd the true one, as shown in Fig. 1b, demonstrates th
o-obtained phased absorption spectrum fits very well to
rue absorption spectrum.

The relative area for a defined region of the spectrum s
ing the metabolite peak of interest provides a quantita
stimate of the concentration of spins giving rise to the N
pectroscopy data. Withâ k and d̂k, the absorption spectru
orresponding to thekth metabolite peak has the form

Pk~v! 5
uâkud̂k

ˆ 2 2 , [16]

er estimates of the first of theK 5 2 signals obtained via RELAX and FML as
(b) For f 1 5 0.42. (c) Ford1 5 0.4.
met
um dk 1 v
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113SPECTRAL FITTING OF NMR SPECTRA
hich is the real part of the Fourier transform of thekth
stimated damped sinusoid whose phase is set to zero. Ac

ng to Parseval’s theorem (27), we have

Ek 5 O
n50

Ns21

~uâkue2 d̂ k n! 2 5
1

2p E
2p

p uâku 2

d̂ k
2 1 v 2dv. [17]

he area ofPk(v) can then be easily computed as

Sk 5 E
2p

p uâkud̂k

d̂ k
2 1 v 2dv 5

2pEkd̂k

uâku
, k 5 1, 2, . . . ,K,

[18]

hereEk is computed by using the first equality in [17].

3. NUMERICAL AND EXPERIMENTAL RESULTS

In this section, we first compare the performances
ELAX and FML with a numerical example and then comp
ELAX and the best SVD method (10) using the measure
MR spectroscopy data since it has been shown in (16) that
ELAX outperforms the SVD method in performance w
umerical examples. Finally, the performances of E-REL
nd E-FML are compared with the measured NMR spec
opy datasets.
Consider first a numerical example showing the pe
ances of RELAX and FML for the signal parameter esti

FIG. 3. (a) The FFT spectrum obtained from the total NMR spectros
ata.
ion when compared with the Crame´r–Rao bound (CRB), p
rd-

f
e

s-

-
-

hich is the lowest bound that an unbiased estimator
chieve. The mean-squared errors (MSEs) of the para
stimates are determined from 500 independent Monte

rials. In this example, the data sequence is generated by

y~n! 5 es1n 1 es2n 1 e~n!, n 5 0, 1, . . . ,N 2 1, [19]

hereN 5 25, s1 5 20.4 1 j2p(0.42), s2 5 20.07 1
2p(0.52), ande(n), as before, is the zero-mean white co
lex Gaussian noise with variances2. The SNR herein i
efined as210 log10(s

2) dB. Figures 2a–2c show the MSEs
he estimates ofa 1, f 1, and d1, as a function of SNR vi
ELAX and FML. (Note that the results fora 2, f 2, andd2 are
imilar.) The MSEs of the parameter estimates obtained
oth methods approach the corresponding CRBs for high S
owever, RELAX provides better performance than FML

ow SNR. We also note that at low SNR, RELAX and FML
omparable in computation. However, the average numb
ATLAB flops required by FML is about 1.7 times of th

equired by RELAX at high SNR.
Consider next an example where the measured time-do
MR spectroscopy data sequence consists of 2048 sam
pecifically, these data samples are 64 acquisition-ave
hosphorus NMR spectra obtained from the medial gastro
ius muscle at 1.5 T (GE Signa) (TR5 2 s, unlocalized
-cm-diameter31P-tuned coil). The spectrum of the data
uence has eight metabolite peaks representing, from l
ight, STD (an external standard of hexachlorocyclotriph

y data. (b) The FFT spectrum obtained by using the first 100 points of t
cop
hazene (HCCTP) and chromium acetate (CrOAc) in ben-



SVD, (e)
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FIG. 4. Comparison of the manually phased absorption spectrum with the phased absorption spectra obtained via (b) RELAX, (c) FML, (d)

-RELAX, and (f) E-FML. Note that the absorption before phase correction is shown in (a).
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115SPECTRAL FITTING OF NMR SPECTRA
ene), PME (phosphomonoester), Pi (inorganic phosphate
DE (phosphodiester), PCr (phosphocreatine), andg-, a-, and
-ATP (adenosine triphosphate). Figures 3a and 3b, re

ively, show the FFT spectrum obtained by using all the 2
ata samples and the first 100 data samples obtaine
quarely truncating the original dataset without using any
ization. It is easier to distinguish the eight peaks in Fig

han it is in Fig. 3a, which is dominated by noise. The abs
ion spectrum using the first 100 measured FIDs is show
ig. 4a, which indicates that phase correction is necessa
btain a pure absorption spectrum. Only the peaks of lab
TD, Pi, and PCr arise from single compounds. The PME p

s generated by two metabolites: phosphatidylcholine (PC
hosphatidylethanolamine (PE). The PDE peak is compos
lycerophosphorylcholine (GPC) and glycerophosphory
nolamine (GPE). The peaks labeleda-, b-, andg-ATP arise

rom nucleotide di- and triphosphates (NDP and NTP), ma
denosine triphosphate (ATP). This is the reason that
eaks have been labeled “ATP.” However, underin vivo con-
itions the spectroscopist is actually monitoring a summa
f all the nucleotide di- and triphosphates present and
imply ATP. Therefore, the assignment of a resonanc
ATP” is not strictly accurate (28). In addition, only theb peak
s a pure NTP (mainly ATP) signal. Theg peak contain
ontributions from both NTPs and NDPs. Thea peak consist
f NDPs, NTPs, and nicotinamide dinucleotide (NAD/NAD
29, 30). Therefore, the three ATP peaks are not expecte
ave equal areas. Theb peak is the smallest, theg peak is

arger, and thea peak is the largest. This can be clearly see
imply visual inspection of Figs. 4b–4f. The phased absorp
pectra obtained via the RELAX, FML, and SVD algorith
rom the first 100 data samples without using anya priori
nowledge about the peak locations are shown in Figs. 4b
espectively. Note that seven of the eight peaks are pro

TAB
The Approximate Frequency Locations of the Eight 31P Metab

STD PME Pi

requency (ppm) 26.57 9.06 7.11

TAB
The Approximate Frequency Locations of the

Used in the Second

STD PME Pi

requency (ppm) 27.07 8.54 6.91
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dentified by all the three methods and none of these me
an locate the peak of PME without using thea priori knowl-
dge about the peak locations. Table 1 shows the approx

ocations of the eight metabolite peaks estimated by t
pectroscopy experts. The actual peak locations are assum
e anywhere within the frequency intervals of length 0.23
entered at the approximate locations given in Table 1.
ave assumed that only one dominant peak is located at
ossible frequency interval.) With thisa priori knowledge
bout the possible frequency intervals of the damped sinus
ll eight metabolite peaks are identified by using E-REL
nd E-FML. It is found that the phased absorption spe
btained via E-RELAX and E-FML fit well with the manua
hased absorption spectrum obtained via 114° zero-order

ng, as can be seen clearly from Figs. 4e and 4f. (Note t
ertical offset is introduced in Figs. 4b–4f to show e
pectrum clearly.)
Finally, consider 52 consecutively measured NMR spec

opy datasets. Specifically, these data samples are 16-ac
ion-averaged, phosphorus, NMR spectra obtained from
edial gastrocnemius muscle at 1.5 T (GE Signa) (TR5 2 s,
nlocalized, 6-cm-diameter31P-tuned coil) while the volunte
ested (datasets 1–7), performed in-magnet exercise (da
–28), and rested again (datasets 29–52). This type of d

s difficult to analyze automatically due to the fast chang
mplitudes, frequency locations (due to PH change), and
verlap of the damped sinusoids. Thea priori knowledge on

he approximate frequency locations of the eight phosph
etabolite peaks is determined and verified by three spe

opy experts. Table 2 shows these approximate peak loca
he frequency interval of length 0.23 ppm is again used in
xample. Figures 5a and 5b, respectively, show the
etabolite peak estimates versus the dataset number
ELAX and FML. Since the NMR spectroscopy data

1
e Peaks of the Data Used in the First Experimental Example

Peak

DE PCr g-ATP a-ATP b-ATP

5.29 2.11 20.05 25.29 213.85

2
ight 31P Metabolite Peaks of the 52 Datasets
erimental Example

Peak

DE PCr g-ATP a-ATP b-ATP

4.87 2.06 20.13 25.74 214.08
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ollected at a relatively low SNR and PME, Pi, and PDE ar
losely spaced and overlapped, RELAX and FML cannot
ide consistent location (frequency) estimates of PME, Pi, and
DE for the 52-set measured data. In addition, both RE
nd FML will erroneously identify nose peaks as metab
eaks. Note that frequency estimates via FML are worse

hose via RELAX. More consistent frequency estimates ca
btained via E-RELAX and E-FML by using thea priori
nowledge of the frequency intervals, as shown in Figs. 5c
d. In these figures there are no noise peaks identifie
etabolites.
Figures 6 and 7, respectively, illustrate the relative a

orresponding to the parameter estimates of the eigh31P

FIG. 5. Distribution of the eight31P metabolite peak estimat
etabolite peaks obtained via E-RELAX and E-FML. Dur-E
-

X
e
an
e

d
as

s

ng exercise, it is expected that the amplitude of the S
eak will remain constant (within the limits of the sign

o-noise error), the Pi peak will increase, and the PCr pe
ill decrease. The other peak amplitudes are not expect
hange during exercise. Following exercise, the Pi and PC
eak amplitudes are expected to return to their rest va
his is what is observed via E-RELAX and E-FML ana
es, as illustrated by Figs. 6 and 7, respectively. Howe
-FML analysis is more error-prone, as shown by the v

ow Pi peak amplitude for dataset 22 and very highi
mplitudes for datasets 44 and 45. E-FML also shows l
nd spurious amplitude errors for the PME and PDE pe
hich can be seen from Figs. 7b and 7d. Analysis

obtained via (a) RELAX, (b) FML, (c) E-RELAX, and (d) E-FML.
es
-RELAX more accurately reflects (within the limits of the
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ignal-to-noise error) the expected metabolite level tre
or this example, the MATLAB flops required by RELA
ML, E-RELAX, and E-FML are about 4.43 109, 5.1 3
09, 1.9 3 109, and 2.73 109, respectively.

4. CONCLUSIONS

In this paper, we have presented the E-RELAX algori
nd applied it to measured phosphorus (31P) spectroscopy dat

FIG. 6. Relative areas of the eight31P metabolite peaks versus the da
yclotriphosphazene (HCCTP) and chromium acetate (CrOAc) in benze
ster). (e) PCr (phosphocreatine). (f)g-ATP. (g) a-ATP. (h) b-ATP.
hen the SNR of the recorded NMR spectroscopy data is lor
s.nd there exist closely spaced damped sinusoids, the E
AX algorithm can still provide accurate parameter estim
ue to using thea priori knowledge of the possible frequen

ntervals of the damped sinusoids, which is more flexible
he a priori knowledge of the exactly known frequency lo
ions and damping ratios used by other methods. The qu
cation of the NMR spectroscopy data, including the ana
f the phased absorption spectra and the calculation o

et number obtained via E-RELAX. (a) STD (an external standard of he
). (b) PME (phosphomonoester). (c) Pi (inorganic phosphate). (d) PDE (phospho
tas
ne
welative areas corresponding to the metabolite peaks of interest,



c a
f

chlorocy-
c ter).
(
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an be accomplished readily by using the parameter estim
rom E-RELAX.
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